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Depinning of stiff directed lines in random media
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Driven elastic manifolds in random media exhibit a depinning transition to a state with nonvanishing velocity
at a critical driving force. We study the depinning of stiff directed lines, which are governed by a bending
rigidity rather than line tension. Their equation of motion is the (quenched) Herring-Mullins equation, which
also describes surface growth governed by surface diffusion. Stiff directed lines are particularly interesting as
there is a localization transition in the static problem at a finite temperature and the commonly exploited time
ordering of states by means of Middleton’s theorems [Phys. Rev. Lett. 68, 670 (1992)] is not applicable. We
employ analytical arguments and numerical simulations to determine the critical exponents and compare our
findings with previous works and functional renormalization group results, which we extend to the different line
elasticity. We see evidence for two distinct correlation length exponents.
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I. INTRODUCTION

Elastic manifolds in random media are one of the most
important model systems in the statistical physics of disordered
systems, which exhibit disorder-dominated pinned phases with
many features common to glassy systems [1,2]. Likewise, the
depinning of an elastic manifold from a disorder potential
under the action of a driving force is a paradigm for the
nonequilibrium dynamical behavior of disordered systems
capturing the avalanche dynamics of many complex systems
if they are driven through a complex energy landscape [3].

In particular, the problem of a directed line (DL) or directed
polymer (i.e., an elastic manifold in 1 + 1 dimensions) in a
random potential and driven by a force has been the subject
of extensive study [4–13]. At zero temperature, there is a
threshold force at which the manifold changes from a localized
state with vanishing mean velocity to a moving state with a
nonzero mean velocity.

The depinning transition has been treated within the
framework of classical critical phenomena by functional renor-
malization group techniques starting from the more general
problem of depinning of D-dimensional elastic interfaces
(with D = 1 corresponding to lines). In D = 4 − ε dimen-
sions, “critical” exponents at depinning can be calculated by
functional renormalization using dimensional regularization
in an ε expansion [14–16].

At finite temperature, there is experimental evidence for a
creep motion at any nonvanishing driving forces which can
be understood qualitatively as thermally activated crossing of
energy barriers which result from an interplay of both elastic
energies of the line and the disorder potential.

The energy of DLs such as flux lines, domain walls, and
wetting fronts is proportional to their length; therefore, the
elastic properties of directed lines are governed by their line
tension, which favors the straight configuration of shortest
length. Here we concentrate on stiff directed lines (SDLs),
whose elastic energy is given by the curvature of the line
and, thus, represents a bending energy. This gives rise to
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configurations which are locally curvature-free and straight,
but, in contrast to the DL, the straight segments of SDLs can
assume any orientation even if this increases the total length
of the line. In this paper we study the depinning of a SDL in
a random medium under the action of a uniform driving force
F , see Fig. 1.

There are a number of applications and interesting general
theoretical issues concerning SDLs in random media. The
overdamped equation of motion of a SDL is the (fourth-order)
Herring-Mullins linear diffusion equation [17,18], which
also describes surface growth governed by surface diffusion.
The depinning dynamics of the Herring-Mullins equation in
quenched disorder has been subject of a number of prior studies
[19–22], whose findings (e.g., an unphysically small roughness
exponent) differ in part significantly from ours as we will point
out below (see Sec. II B). SDLs also describe semiflexible
polymers with contour lengths smaller than their persistence
length for bending fluctuations, such that the assumption of a
directed line is not violated [23]. Our results can be applied to
the depinning dynamics of semiflexible polymers such as DNA
or cytoskeletal filaments like F-actin in a random environment,
such as a porous medium, as long as the correlation length of
the depinning transition is smaller than the persistence length.
As in other semiflexible polymer phase transitions (such as
adsorption) nonuniversal quantities such as the value of the
depinning threshold itself will be governed by the bending
elasticity. At the depinning transition, where the correlation
length diverges, semiflexible polymers will exhibit a crossover
to critical properties of effectively flexible lines (DLs) with a
segment length set by the persistence length.

Moreover, static SDLs in a random potential feature a
disorder-driven localization transition at finite temperatures
already in 1 + 1 dimensions [24–26]. Due to an interesting
dimensional shift in the problem, an analogous transition
occurs for DLs only in higher dimensions. In principle, this
offers an opportunity to observe new phenomena arising from
an interplay of depinning and delocalization for SDLs (the
disorder used in Refs. [19–22] does not feature such a transition
in the static problem). The localization transition at a finite
temperature also offers the opportunity to test the usage of
static quantities in the treatment of creep motion, because the
SDL is not pinned by disorder above the critical temperature.

1539-3755/2014/90(1)/012101(14) 012101-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.68.670
http://dx.doi.org/10.1103/PhysRevLett.68.670
http://dx.doi.org/10.1103/PhysRevLett.68.670
http://dx.doi.org/10.1103/PhysRevLett.68.670
http://dx.doi.org/10.1103/PhysRevE.90.012101


HORST-HOLGER BOLTZ AND JAN KIERFELD PHYSICAL REVIEW E 90, 012101 (2014)

FIG. 1. (Color online) Schematic figure of typical SDL config-
urations below, at, and above the depinning transition (from left to
right) in random-potential (RB) disorder. The black circles represent
especially favorable locations within the random potential. Segments
of the line that are currently not moving are marked with gray squares.

A lot of the progress for the depinning theory of DLs has
been based on two basic theorems due to Middleton [6], which
essentially state that a forward moving DL can only move
forward and will stop in a localized configuration, if such
exists. This allows for an unambiguous time ordering of a
sequence of states. We will show that these theorems do not
hold for the SDL, which can be seen as a consequence of
the next-to-neighbor terms that are introduced by the bending
elasticity.

The paper is organized as follows. We present the model
and the relevant equations of motion in Sec. II, where we also
comment on some equilibrium properties and previous work
on the SDL. In Sec. III we present analytical results based
on scaling arguments and functional renormalization group
calculations. In Sec. IV we present numerical methods and
results, and in Sec. V we comment on the nonapplicability of
Middleton’s theorems for SDLs. We conclude with a summary
of our results in Sec. VI.

II. MODEL

A general approach to driven elastic manifolds starts from
1 + D-dimensional manifolds with an elastic energy

Hel = 1

2

∫
dDx

(
∂a
x u

)2
. (1)

As an external pulling force F intrinsically couples to only one
transversal displacement component u, there is no substantial
gain in treating more than one transverse dimension, and
we will restrict our analysis to this case. We assume that
the manifold’s internal coordinates x are bounded to the
D-dimensional hypercube [0,L]D and call L the system size
(or length in D = 1). We are mostly interested in the simplest
case of lines with D = 1. The order of the derivative a

distinguishes different kind of elasticities, a = 1 is the directed
line (DL) with tensional elasticity, and a = 2 is the stiff
directed line [25,26] (SDL) with bending elasticity.

The equilibrium statistics of the SDL and DL model
are related as there is a mapping of the SDL to the DL
model in higher transverse dimensions in problems with
short-ranged potentials [27,28]. In an earlier work we extended
this mapping between SDL and DL in short-ranged random

potentials [25,26]. In the context of polymers, the SDL model
is often used as a weak-bending approximation to the so-called
wormlike chain or Kratky-Porod model [29,30], which is the
basic model for inextensible semiflexible polymers, such as
DNA, cytoskeletal filaments like F-actin, or polyelectrolytes.
The weak-bending approximation is only applicable on length
scales below the persistence length Lp, where tangent fluc-
tuations 〈(∂xu)2〉 < 1 remain small. The persistence length
contains thermal and disorder contributions as discussed in
Refs. [25,26]. Additionally, there is a relation of the SDL
model to surface growth models, on which we will comment
below.

In suitable units, the overdamped equation of an elastic line
with an elastic energy Hel as in (1) can be written as

∂u(x)

∂t
= − δHel

δu(x)
+ η(x,u) + F (2)

at zero temperature. The first term on the right-hand side
represents the elastic forces as obtained from variation of
the elastic energy (1). The force F denotes a static, uniform
pulling force, which tends to depin the line from the disordered
medium, and η(x,u) is a quenched force due to the disordered
medium. For this quenched force we distinguish two cases
in the following: random-field and random-potential disorder.
For random-field (RF) disorder, η(x,u) is a random variable
with zero mean and short-ranged correlations,

η(x,u)η(x ′,u′) ∝ δ(x − x ′)δ(u − u′) (RF), (3)

whereas for random-potential or random-bond (RB) disorder
the force η(x,u) = −∂uV (x,u) stems from a random potential
V (x,u), which features zero mean and short-ranged correla-
tions. Hence, after a Fourier transformation in the transverse
dimension, we can write

η(x,q)η(x ′,q ′) ∝ q2δ(x − x ′)δ(q + q ′) (RB). (4)

Within this work we will mostly focus on random-potential
(RB) disorder; in particular, all our numerical results in Sec. IV
are for RB disorder. The analytical arguments in Sec. III, i.e.,
scaling relations and functional renormalization group results,
will be applied to both types of disorder.

If thermal fluctuations at temperature T are included, an
additional time-dependent white noise τ (x,t) with zero mean
and correlations

〈τ (x,t)τ (x ′,t ′)〉T = 2T δ(x − x ′)δ(t − t ′) (5)

is added on the right-hand side of Eq. (2). We use 〈X〉 to denote
averages over time, [X] for spatial averages at a given time, X
for the average over realizations of the quenched disorder, and
〈X〉T for the average over realizations of the thermal noise. A
subscript c at an average denotes a cumulant.

At zero temperature, there is a finite threshold value FT at
which the velocity

v(t) = [u̇(x,t)] (6)

of a driven elastic manifold in a pinning potential becomes
nonzero in the limit of very large times t :

〈v(t)〉
{= 0 F � FT

> 0 F > FT
. (7)
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The shape of the driven line and its dynamics are usually
characterized by the roughness exponent ζ and the dynamical
exponent z, which describe how the roughness or width of the
line,

w2(t) = [u(x,t)2 − [u(x,t)]2] = [u(x,t)2]c, (8)

scales with the system size L and the time t :

w2(t) ∼
{
t2ζ/z t � tL
L2ζ t � tL

(9)

with the typical time scale

tL ∼ Lz. (10)

SDLs with a = 2 are closely related to surface growth mod-
els for molecular beam epitaxy (MBE) [31]. In the presence
of surface diffusion, MBE has been described by a (quenched)
Herring-Mullins linear diffusion equation [17,18,32,33] for a
surface described by a height profile u(x,t):

∂u(x)

∂t
= − ∇4u(x) + η(x,u) + F . (11)

In the Herring-Mullins limit, it is assumed that effects from
a surface tension can be neglected as compared to surface
diffusion effects. Surface tension would give rise to additional
∇2u-terms. In this context, the quantity F describes the
constant flux of particles onto the surface and η(x,u) random
fluctuations in the deposition process.

In suitable units [34], the Herring-Mullins equation (11) is
equivalent to the overdamped equation of motion (2) of the
SDL. Without external forces (η = 0, F = 0) the exponent ζ

and z take their thermal values ζth = 3/2 and zth = 4 [31].
The observation of the “super-rough” ζ = 3/2 > 1 in tumor
cells [35] hints towards further experimental relevance of the
Herring-Mullins equation.

For the DL with a = 1, the equation of motion is the
quenched Edwards-Wilkinson equation [36]

∂u(x)

∂t
= ∇2u(x) + η(x,u) + F , (12)

and the thermal exponents are ζth = 1/2 and zth = 2. Generally
the thermal exponents are given by ζth = a − D

2 and zth = 2a.

A. Equilibrium properties

The equilibrium (F = 0) problem of a SDL in a 1 + 1-
dimensional medium with RB disorder features a localization
transition at a finite temperature Tc as we pointed out in
Refs. [25,26]. The roughness exponent is ζeq,RB ≈ 1.59 > 3/2
in the disorder-dominated phase for T < Tc and assumes the
thermal value ζ = 3/2 for T > Tc. In contrast to the SDL,
the DL with one transverse dimension is localized for all
temperatures with a roughness exponent ζeq,RB = 2/3 [37].
This implies that the SDL in RB disorder offers the opportunity
to study the dynamics of an unlocalized elastic manifold in
disorder for T > Tc and the interplay of the delocalization
transition at T = Tc and a depinning transition at F = FT .

For RF disorder, functional renormalization group ap-
proaches [38,39] using an expansion in ε = 4a − D around
the upper critical dimension Dc = 4a give a static roughness
exponent ζeq,RF = ε/3 to at least two (and possibly all) orders

in an expansion in ε and in good agreement with numerical
results both for the DL [40,41] and the SDL [42]. In a
discrete model that directly implemented surface diffusion
and was proposed to correspond to the undriven quenched
Herring-Mullins equation a differing exponent ζeq,RF ≈ 1.93
was found for the SDL [19].

The result ζeq,RF = ε/3 is the simple scaling or “Flory”
result, which follows from balancing the typical elastic
energy of a line with displacement u, which scales as Eel ∼
LD(u/La)2, with the typical disorder energy Edis ∼

√
LDu

as the disorder energy is picked up at LD independent sites
and its correlator decreases linearly in u for large enough u

[43]. Similar arguments fail to reproduce the nontrivial RB
roughness exponent but can provide bounds to it as discussed
in Refs. [25,26].

B. Previous work on the depinning of the quenched
Herring-Mullins equation

There has been some previous work on the depinning of
SDLs with RF disorder. From renormalization group analysis
it is expected that the critical exponents of the depinning
transition are universal for all disorders with shorter ranged
correlations than RF (including RB), although a different
scenario is possible in principle [8]. For the DL the exponents
do coincide for RF and RB disorder [13].

The roughness exponents previously found at the depinning
of a SDL in RF disorder are ζ ≈ 1.48–1.50 and ζ = 1.48 and
a dynamical exponent z ≈ 1.77–1.78 [20,21]. Furthermore, in
a discrete model [22] based on the quenched Herring-Mullins
equation ζ = 1.35 and z = 1.60 have been found at depinning.
One obvious problem with these values for the roughness
exponent ζ is that they are smaller than the thermal value
ζth = 3/2, i.e., that disorder decreases the roughness of the
line. We will comment below in more detail on similarities
and differences in the findings of these studies to ours.

III. ANALYTICAL RESULTS

A. Critical exponents and scaling relations

In order to describe the depinning of driven elastic lines
in a random medium within the framework of classic critical
phenomena [14–16,44], the roughness exponent ζ and dy-
namical exponent z introduced in Eq. (9) are not sufficient but
one additional exponent related to the control parameter, the
driving force F , is needed. In the vicinity of the depinning
threshold FT we can introduce two exponents describing the
“order parameter”: the velocity v of the center of mass and the
correlation length ξ ,

v ∼ (F − FT )β, (13)

ξ ∼ (F − FT )−ν . (14)

The correlation length ξ gives the typical length of segments
that rearrange during the avalanche-like motion close to the
threshold; the typical time scale for this segment motion is
tξ ∼ ξz.

We can use one of these exponents, e.g., the correlation
length exponent ν, to obtain from the equilibrium scaling
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relation

w(t,L) = t ζ/zg
(
t/tzL

)
(15)

with a scaling function g(x) [with g(0) ≈ 1 and g(x) ∼ x−ζ/z

for x � 1], which underlies Eq. (9), a corresponding scaling
relation close to depinning,

w(t,F ) = t ζ/zg
(
t/tzξ

) = t ζ/zf±[t1/νz(F − FT )], (16)

with scaling functions f±(x) [for forces above (+) and below
(−) the threshold and with f±(0) ≈ 1 and f±(x) ∼ |x|−ζν for
|x| � 1].

There are two scaling laws relating the exponents β and ν to
the roughness exponent ζ and the dynamical exponent z at the
depinning transition. The first scaling law simply establishes a
relation between β and ν using that v ∼ w(tξ )/tξ ∼ ξ ζ−z (for
t � tξ ), which results in

ν = β

z − ζ
. (17)

This relation is valid independently of the form of the elastic
energy, i.e., independent of a. As all exponents should be
positive, this also implies z > ζ . The other relation comes
from an additional tilt symmetry of the equation of motion
[16,44], which leads to

ν = 1

4 − ζ
(18)

for the SDL (a = 2) or, for general elasticity, to ν = (2a −
ζ )−1. The relations (17) and (18) should hold both for RF and
RB disorder at depinning.

For the analysis of simulation data it is convenient to
infer exponents from the short time scaling properties of the
velocity, which follows from the scaling (16) and v ∼ w/t :

v(t,F ) ∼ t ζ/z−1f±[t1/νz(F − FT )]

∼ t−δf±[tγ (F − FT )], (19)

where we introduce two auxiliary exponents:

γ = 1/νz, (20)

δ = 1 − ζ/z = β/νz = βγ, (21)

for convenient data analysis [using the scaling relation (17) in
Eq. (21)].

The exponent values obtained previously in Ref. [20] are
ζ ≈ 1.50 and ν ≈ 1.01 at the SDL depinning transition (for
RF disorder). These values are problematic as they violate the
scaling relation (18). One reason for this problem might be that
the exponent ζ has been determined by direct measurement
of the roughness w(L) and its scaling for different system
sizes L. However, such an approach is strongly influenced
by the choice of the transverse system size (which should
be M ∼ Lζ ) because the value for the critical force FT also
depends on the transverse system size. As Ref. [20] contains
two other independently measured exponents, namely, δ and
β in our nomenclature, and scaling relations (17) and (18)
imply ζ = 4β(1 − δ)/[δ + β(1 − δ)], we can give a resulting
“scaling” roughness exponent ζscaling ≈ 2.4, which strongly
differs.

There is a another exponent that is often referred to as ν or
νFS describing the scaling of the sample-to-sample fluctuations
of the threshold force


FT ∼ L−1/νFS (22)

in a system of finite size L. In general, ν and νFS do not have
to coincide. For the DL, ν = νFS ≈ 4/3 has been confirmed
[9,45], whereas for the charge density wave problem (periodic
potential), ν and νFS are distinct [46].

This might affect the scaling relations (17) and the auxiliary
exponents γ and δ [see Eqs. (20) and (21)], which could read
νFS = β/(z − ζ ), γ = 1/νFSz, and δ = β/νFSz. This happens
if threshold force fluctuations by sample-to-sample disorder
fluctuations on a scale L, 
FT ∼ L−1/νFS , are larger than the
excess to the threshold force necessary to depin a segment of
length L, F − FT ∼ L−1/ν ; see Eq. (14). Therefore, we expect
ν < νFS if ν and νFS are distinct.

Fluctuations in the depinning force FT origin from the
fluctuations in the disorder. A finite manifold of size L and
width w ∼ Lζ occupying a volume LDw ∼ Lζ+D should at
least pick up the same free energy fluctuations as a summation
of i.i.d. random numbers which are ∼(Vol.)

1
2 . This results in a

general lower limit for the depinning force fluctuations [47]:


FT � c(Vol.)−
1
2 = c̃L− ζ+D

2 , (23)

thus giving

νFS � 2

ζ + D
. (24)

It has been argued that ν = νFS for an elastic line as long as the
line continuously “explores” new regions of the disorder [44].
In this interpretation, distinct correlation length exponents ν

and νFS for the charge density wave are a manifestation of the
fact that the line “knows” the total potential at each point due
to its periodicity. If ν = νFS holds, the bound (24) is equivalent
to a lower bound to the roughness exponent ζ at depinning,

ζ � ε/3 if ν = νFS, (25)

which is valid for all elastic energies of the form (1), i.e., for
all a. The contraposition is equally important: if the roughness
is less than ε/3, this implies that ν and νFS are distinct.

An upper bound to the roughness exponent comes from
studying the line in the Larkin approximation with a constant
(u-independent) random force acting on every segment of
the line [2,48]. The resulting Larkin roughness exponent is
ζLarkin = ε/2. As the line can gather unbound energy via large
undulations in accordance with the force this represents an
upper bound to the problem with finite potential range and,
therefore,

ζ � ε/2, (26)

which holds for the roughness exponents ζ below, at, and above
depinning.

B. Functional renormalization group

It has originally been suggested that the roughness ex-
ponent ζ at the threshold force F = FT is independent of
the type of disorder (RB or RF) and coincides with the
static roughness of the line in a medium with RF disorder
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FIG. 2. (Color online) The fixed point solution to the functional
renormalization group flow equation of Ref. [8] for the disorder
correlator 
(u). The length scale u0 is determined via

∫
du
(u/u0) =

1. The two-loop solution corresponds to a roughness exponent given
by Eq. (27). The small deviations between first and second order give
rise to distinct roughness exponents (29).

ζeq,RF = ε/3 to all orders of ε [44]. The discrepancy to
numerical simulations [49] has been solved by means of the
two-loop functional renormalization group (FRG) [8], which
gives for the roughness exponent at depinning both for RB and
RF disorder

ζ (2a) = ε

3
+ X(2a)ε2

27
√

2γ
+ O(ε3) (27)

with the Euler-Mascheroni constant γ and a constant X(2a)

that depends on the form of the elastic energy, especially
X(2) = 1 and X(4) = −1/6. The FRG approach is based on
a flow equation for the disorder force correlator 
(u) defined
by

η(x,u)η(x ′,u′) = δ(x − x ′)
(u − u′). (28)

At two-loop order the FRG flow converges to the same
fixed point disorder correlator (shown in Fig. 2) for both RB
and RF disorder. Therefore, two-loop FRG predicts identical
roughness exponents at depinning.

As ε = 4a − d is rather large for the SDL, the two-loop
contribution is important. This can be seen in the significant
deviation of the two naive results,

ζ1-loop ≈ 2.33 and ζ2-loop ≈ 1.94, (29)

using a direct evaluation of (27) (Padé approximants give
values ζ2-loop ≈ 1.9432 to ζ2-loop ≈ 1.999). Thus the SDL
roughness at depinning is expected to be above the static value
for zero external force [25,26] ζeq,RB ≈ 1.59 for RB disorder,
but below the static result ζeq,RF = 7/3 for RF disorder. We
note that any extrapolation of the results in Eq. (27) necessarily
violates the bound (25), which holds if ν = νFS, as the negative
two-loop contribution leads to ζ (4) < ε

3 for some finite ε. This
is an indication for two distinct exponents ν and νFS.

In Fig. 2 we show the numeric solution of the FRG fixed
point for the disorder correlator 
(u) verifying that Eq. (27)
does indeed correspond to the unique non-negative faster than
algebraically decaying (convex in double logarithmic plot)
solution. We followed the numerical procedure outlined in
Refs. [8,39]. The new second order contribution y2 giving
the two-loop contribution in the ansatz 
(u) = ε/3y1(x) +

TABLE I. Critical exponents at the SDL depinning transition
determined via one-loop functional renormalization group (FRG) [8]
and numerical simulation results from Ref. [20] and this work. The
last line uses the numerical values for β and δ and the scaling relations
of Sec. III A.

Exponent ζ z ν β δ

FRG 7/3 22/9 3/5 1/15 1/22
Simulation Ref. [20] 1.50 1.78 1.01 0.289(8) 0.160(5)
Simulation this paper 2.00 2.15 0.50 0.29 0.07

ε2/18y2(x) + O(ε3) can be approximated by the Taylor series

y2(x) ≈ 0.190 021u − 0.1613u2 + 3.374 91 × 10−2u3

+ 3.216 49 × 10−3u4 − 4.320 55 × 10−4u5

− 2.550 32 × 10−4u6 − 4.7737 × 10−5u7

+ 1.0426 × 10−6u8 + 3.444 12 × 10−6u9

+ O(u10). (30)

The FRG calculation presented in Ref. [8] is in principle
also capable of determining the dynamical exponent z and,
thus, all exponents. However, to two loops this involves the
evaluation (to leading order in ε) of the “correction to friction”
which remains an open task. It is possible (details are given in
the Appendix) to find bounds for the value of the dynamical
exponent z in two-loop order:

1.86 � z2-loop � 2.31. (31)

The exponents at one-loop order for the SDL are given in
Table I together with the previous numerical findings.

An interesting question in the FRG analysis is the stability
of the fixed point solution. It has been argued [8,44] that the
two previously defined correlation length exponents coincide,
that is, ν = νFS, if the fixed point solution for the disorder
correlator is stable. This is in agreement with the results for
charge density waves (fixed point unstable [14,15], ν �= νFS

[46]) and the DL (fixed point presumably stable [8], ν ≈ νFS

[9]). We did not try to perform a full stability analysis, but we
note that the simple argument of Ref. [8] for the instability of
the fixed point for charge density waves might also hold for
SDLs: after integrating the FRG flow equation from u = 0+
to u = ∞ it reads

−m∂m

∫ ∞

0

(u) du = (ε − 3ζ )

∫ ∞

0

(u) du − X(4)
′(0+)3.

(32)

The second contribution on the right-hand side is negative
because (to two loops)

ζ (2a) = 1

3
ε − X(2a)
′(0+)3

3
∫



= ε

3
+ ζ

(2a)
2 ε2 (33)

and ζ
(4)
2 < 0 [with the shorter notation

∫

 ≡ ∫ ∞

0 du
(u)].
More importantly, this implies that ζ < ε/3, and, thus, the
FRG fixed point of

∫

 is unstable. The instability of the fixed

point of Eq. (32) leads to a flow of the form


m(u) = 
∗(u) + cm−(ε−3ζ ) (34)
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with c = m
ε−3ζ

0

∫ ∞
0 [
m0 (u) − 
∗(u)] du. Thus an additional

constant (u-independent) contribution to the fixed point 
∗(u)
is generated that grows as m goes to zero if ζ < ε/3. This
means that to two-loop order a random force of the Larkin
type is generated. This random force generates the Larkin-like
roughness

ζLarkin = ε/2, (35)

which for the SDL with ε = 7 implies a separate correlation
length exponent

νFS = 1

4 − 7/2
= 2 (36)

according to the tilt-symmetry scaling relation (18).

C. Large force limit, crossover to single-particle limit

For sufficiently large external forces we can generalize the
perturbative arguments for DLs from Refs. [4,5] to general
elastic manifolds in 1 + D dimensions with an elastic energy
of the form (1). Then, to second order in perturbation theory,
the velocity of the center of mass of the line is

v ≈ F − const × F
D−2a

2a . (37)

Here we assumed a short-ranged random potential that is
completely uncorrelated along the internal dimensions. For
the problem at hand (D = 1, a = 2) this implies that the first
correction at large forces should scale as

1 − v

F
∼ F−7/4. (38)

This is in agreement with our numerical results (see Sec. IV D)
for not too large forces. The asymptotic behavior for very
large forces can be understood with the same perturbative
reasoning that led to Eq. (38), but neglecting the elastic forces
and considering the effective single-particle (sp) equation ∂u

∂t
=

η(u) + F . This leads to

vsp = F − const × F−1R−3
u , (39)

1 − vsp

F
∼ F−2. (40)

The crossover should happen, when the length scale (
u/F )1/4

on which the elastic adjustments to the forced induced motion
are relevant becomes significantly smaller than the lattice
spacing 
x . This is the length scale that corresponds to the
time scale 
u/F for a moving line to get to the next “disorder
site” for the free dynamic exponent z0 = 4.

D. Finite temperature

At finite temperatures T > 0 there is a thermally activated
motion, 〈v〉 > 0, for any driving force F . For the DL this
dynamical phenomenon has successfully been described via
the thermal activation over barriers that are determined from
a static consideration as the motion is expected to be very
slow for low temperatures and forces [7,50,51]. For forces
F < FT below depinning this involves activation over large
energy barriers (diverging in the limit F ≈ 0) and results in
so-called creep motion. As a result of thermal activation, the
sharp depinning transition at F = FT is rounded. For forces

F > FT above depinning the line moves with finite velocity
and additional thermal activation has only little effect.

For the SDL, there is an additional complication because
of the disorder-induced localization transition at a finite
temperature Tc [25,26]. For temperatures T < Tc, we expect
the SDL to behave qualitatively similar to a DL, i.e., to exhibit
creep for F < FT , thermal rounding of the depinning transition
at F = FT , and only minor modifications of the flow behavior
for F > FT . In order to derive the SDL creep law via a
scaling argument, we consider the static equilibrium energy
fluctuations, which scale as Eeq ∼ Lω with the (equilibrium)
energy fluctuation exponent ω = D − 2a + 2ζeq. In a static
framework, a depinning force F simply tilts the energy
landscape UF ∼ FLDw ∼ FLD+ζeq . Balancing these two
contributions to optimize the total barrier energy Ebarrier =
Eeq − UF , one gets the energy of the effective barriers scaling
as

Ebarrier ∼ F−μ (41)

with the barrier exponent

μ = D − 2a + 2ζeq

2a − ζeq
= ω

2a − ζeq
. (42)

For lines with D = 1, this gives μ = 1/4 for the DL and
μ ≈ 0.07 for the SDL. The velocity follows from the Arrhenius
law to be

v ∼ exp [−const × F−μ/T ]. (43)

For the DL this has been confirmed experimentally [52].
For temperatures T > Tc, on the other hand, the scenario

is less clear. In the static problem, the SDL then already
depins by thermal fluctuations. The roughness in the static
problem is larger than the thermal roughness, ζeq > ζth,
only for temperatures T < Tc below the critical temperature
[25,26]. For T > Tc, the static SDL is thermally rough ζth =
(4 − D)/2, and there are no macroscopic energy fluctuations.
Assuming that the static equilibrium physics is indeed relevant
for low driving forces (as in the derivation of the creep law), the
conclusion could be that there are only finite energy barriers
of characteristic size Ebarrier = C, and the velocity is given by
the so-called thermally assisted flux flow (TAFF) [53,54]

vTAFF ∝ F/T exp [−C/T ]. (44)

The treatment within the FRG [7] suggests that (at least to
one-loop order) the force-force correlator 
 is only affected
by a finite temperature within the “thermal boundary layer” of
width ∼ T (especially there is only a “cusp” for T = 0). Within
this layer the line assumes the static roughness ζeq, whereas on
larger scales the dynamic roughness ζ > ζeq becomes apparent
(for finite v > 0). Thus, the FRG seems to be in line with our
previous reasoning, that is, μ = 0 for T > Tc and a TAFF-like
velocity-force curve.

However, this comes with the substantial caveat that, to our
knowledge, the FRG theory in its present form is not apt to
describe the full temperature dependence and, in particular, the
existence of a transition to thermal roughness (which should
manifest itself in the emergence of a fixed point solution
with roughness ζth) at finite temperature. One basic difficulty
is that a disorder-induced localization transition at a finite
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temperature Tc does occur only for low dimensions D < 2a,
whereas the FRG uses an expansion around an upper critical
dimension D = 4a. In Sec. IV F we will present numerical
evidence that the thermal rounding of the depinning transition
at the threshold force FT is very similar for DLs and SDLs. This
surprising result suggests that the thermal depinning transition
of the SDL in the absence of a driving force does not change
the depinning by a driving force qualitatively.

The numerical determination of the barrier exponent μ is an
unsolved problem even with algorithms specifically designed
to capture the creep dynamics [55]. The thermal rounding of
the transition leads to a temperature-dependent velocity at the
(zero-temperature) threshold force, which, for the DL, has
been found to follow a power law

vFT
= T ψ. (45)

It has been suggested that ψ = β/(1 + 2β) [7,56] (the
perturbative argument in Ref. [7] is equally valid for the
SDL). Numerically and experimentally a value ψ ≈ 0.15 ≈
β/(1 + 2β) (β ≈ 0.245 [55]) has been found for the DL with
RB disorder [57,58].

IV. NUMERICAL RESULTS

A. Direct integration of the equation of motion

We make use of a recently presented implementation [13]
for graphics processing units [59] (GPUs). The high number of
parallelly executed computations becomes very advantageous
for large lengths, with an effective speedup of two orders
of magnitude for the DL [13]. As the different elastic force
generates only little additional branching (the determination
of the next-nearest neighbors with periodic boundaries), the
GPU implementation is also favorable for SDLs.

Additionally, we implemented an equivalent simulation for
CPUs. An Euler integration scheme is used for the benefit of
computational simplicity.

In the numerical simulations we focus on random potential
(RB) disorder (as opposed to Ref. [20]). The random potential
is implemented by drawing random numbers from a normal
distribution on a L × M lattice where M is the transverse size
of the system [60]. Between the lattice points the potential is
interpolated by periodic, cubic splines in u direction. Disorder
averages were performed over 1000 samples. Our system is
periodic in the x and u direction, and the simulation starts
with a flat line u(x) ≡ 0.

We set the lattice spacing in both directions equal to one,

x = 
u = 1, and approximate the fourth derivative by the
central finite difference ∇(4)u(x) ≈ u(x − 2) − 4u(x − 1) +
6u(x) − 4u(x + 1) + u(x + 2), which is of second order in
space. A von Neumann stability analysis shows that (without
external forces) the Euler integration scheme becomes unstable
for 
t/
2

x > 2−3. Throughout this work we used time steps

t � 2−6, unless stated differently.

As the width of the line can be influenced by various effects
on different length scales, it can be difficult and error prone to
infer ζ directly from the line width w. Therefore, it is helpful
to study the structure factor

S(q,t) = |u(q,t)|2 ∼ q−(2ζ+1), (46)

F < FT

10−2

10−1

100

101

102

10−4 10−3 10−2 10−1 100 101

S
(q

,t
)

2 sin (q/2)

t = 20

t = 22

t = 24

t = 26

t = 212

FIG. 3. (Color online) Disorder averaged structure factor S(q,t)
for a SDL with F = 1.00 < FT (L = 8192, M = 16 384). The initial
conditions (flat line) persist on long length scales and cross over to
a regime with Larkin roughness (ζLarkin = 7/2, solid line) on short
length scales. After adjustment to the disorder till about t = 26 the
conformation of the line does not change.

where u(q,t) is the Fourier transformation of u(x,t). This
assumes self-affinity of the line.

For sufficiently large M the system is ergodic only above
the threshold, when the line moves. Thus, for forces smaller
than the threshold force (see Fig. 3) the line does not show
the static roughness but adjusts itself to the potential on
short length scales (large wave numbers) leading to Larkin
roughness ζLarkin = 7/2, whereas the conformation on longer
length scales (small wave numbers) depends on the initial
conditions. Here and in the following we plot the structure
factor as a function of 2 sin (q/2) to correct for lattice artifacts.

B. Short-time dynamics scaling

Alike previous studies [13,20,61] we employ short-time
dynamics scaling to determine the critical exponents of the
SDL at depinning. From Eqs. (16) and (19) we know that, at
F = FT , velocity and line width scale as

v ∼ t−δ ∼ t−β/νz, (47)

w ∼ t1−δ ∼ t ζ/z. (48)

These two observables contain the same information regarding
the critical exponents. The behavior for forces near the
threshold can be used to extract the exponent γ = 1/νz from
rescaling the velocity according to Eq. (19):

v(t,F )tβ/νz ∼ f±[t1/(νz)(F − FT )]. (49)

However, with actual data it turns out to be difficult to extract
precise and unambiguous exponents from this finite-size
scaling-like procedure. Additionally, the roughness exponent
ζ becomes apparent in the structure factor S(q,t) for wave
numbers below some qt ∼ L−1

t ∼ t−1/z; see Eq. (46).
In Ref. [20], δ ≈ 0.16 has been found from studying v(t)

and w(t) for RF disorder. In Fig. 4 we obtain the same result for
RB disorder. Additionally, we show in Fig. 5 that the data can
be nicely matched using the scaling of Eq. (49) and γ ≈ 0.56
in agreement with Ref. [20]. By definition of δ and γ , this
implies β = δ/γ ≈ 0.29 and by means of scaling relations
ζ ≈ 2.4–2.5 as we pointed out in Sec. III A. We do not find any
evidence (at any force) in the structure factor supporting this
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1 − δ = 0.84

δ = 0.16

F=1.90
F=2.00

F=1.80
F=1.79

F=1.60
F=1.70
F=1.75
F=1.78
F=1.785

F=1.782
F=1.783
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t

v
w

FIG. 4. (Color online) The disorder-averaged center-of-mass ve-
locity v(t) (top) and roughness w(t) (bottom) in a system with
L = 8192, M = 16 384 for various forces and short times. Both
quantities exhibit power-law regime consistent with δ = 0.16 at
F ≈ 1.782−1.783. For clarity we plotted the data for these data
as full (F = 1.782) and hollow (F = 1.783) circles and used dashed
(F > 1.783) and dotted (F < 1.782) lines for the rest (the key given
in the upper figure holds for both). We note that the time-averaged
roughness 〈w(t)〉 becomes maximal around F ≈ 1.782–1.783.

roughness. We do observe the emergence of a new roughness
exponent ζ ≈ 2 at higher forces as can be seen from Fig. 6. We
consequently conclude that this is a more plausible location
of the threshold force and that ζ ≈ 2 is indeed the threshold
roughness exponent.

10−4

10−3

10−2

10−1

100

101

10−3 10−2 10−1 100 101

tγ |F − FT |

v
(t

)t
δ

FIG. 5. (Color online) Scaling plot of the velocity for different
forces and times using Eq. (49). The upper branch contains forces
F > FT and the lower one forces F < FT . Parameters are as for
Fig. 4, but we used more force values (1 < F < 2). As scaling is
not expected to hold for small times, we considered only t > 10. In
agreement with Fig. 4, we used FT = 1.7825 and δ = 0.16. We see
satisfying scaling for γ ≈ 0.55, which coincides with the findings of
Ref. [20].

ζL = 7/2

ζ = 2

ζth = 3/2

10−2
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F < FT
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F ≈ FT

2 sin (q/2)

S
(q

,t
)

FIG. 6. (Color online) The disorder-averaged structure factor for
a system with L = 8192, M = 16 384 at time t = 4096 at three
different forces representing the three regimes: undercritical, critical,
and overcritical. Although configurations are not strictly self-affine
(pure power-law behavior in the structure factor), there is a clear
emergence of an exponent ζ = 2 around the threshold force. We
identify this as the “critical” roughness exponent. As in Fig. 4, the
system shows maximal roughness at the threshold.

The examination of v(t) at higher forces and larger times
reveals that the curves that do not saturate to a finite v for large
times (F > FT ) or go to zero (F < FT ) seem to consist of
two power-law segments, where only the first one for smaller
times is consistent with δ ≈ 0.16; see Fig. 7. This is analogous
to the most recent findings for the DL in Ref. [13]. In Fig. 7
we show v(t) for F = 1.793, which we believe to be close
to the threshold force FT for the system size we use. As the
exponent δ in the second power-law segment is rather close to
zero and we have no independent method to determine FT (see
also below in Sec. V), giving a precise value for δ is difficult.
Also, as the threshold roughness does not only influence the
structure factor exactly at FT , but also for deviating forces
(given that the correlation length is still noticeable large), we
think that we can rely on our value of ζ ≈ 2 even though we do
not know FT precisely. Additionally, we will support the claim
of a roughness exponent ζ ≈ 2 with an independent method
below in Sec. IV E. In Fig. 7 we show that FT = 1.793 is

δ = 0.16

δ = 0.07

F = 1.793

10−1

100

100 101 102 103 104

t

v

FIG. 7. (Color online) The disorder-averaged center-of-mass ve-
locity for F = 1.793. The system parameters are as for Fig. 4, which
suggested FT ≈ 1.782–1.783. The description by a power-law fits
better in the “macroscopic” large time regime. Although we rather
determined FT by demanding a consistent δ as in Figs. 4 and 5, we
note that, for F = 1.793, the second-power law fits particularly well.
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consistent with an exponent value δ ≈ 0.07 for larger times t ,
whereas δ ≈ 0.16 only at smaller times.

For FT = 1.793 we obtain, based on the numerical results
δ ≈ 0.07 and ζ ≈ 2.0, the following set of exponents:

FT ≈ 1.793, δ ≈ 0.07,

ζ ≈ 2.0, z = ζ/(1 − δ) ≈ 2.15,

ν = 1

4 − ζ
≈ 0.5, β = ν(z − ζ ) ≈ 0.08.

To determine z we used the scaling relation (21). The value
for ν then follows from the scaling relation (18) based on the
tilt symmetry, the value for β from the scaling relation (21).

We note, however, that the value for β is inconsistent
with the value of β ≈ 0.29 that we obtain numerically as
explained in the next subsection. A value β ≈ 0.29 implies
ν = β/(z − ζ ) ≈ 1.92 with error bars that are consistent with
the exponent νFS = 2 introduced above to characterize sample-
to-sample fluctuations of the free energy; see Eqs. (22) and
(36). Moreover, β ≈ 0.29 is consistent only with the scaling
relation δ = β/νFSz ≈ 0.07 [see Eq. (21)] if we use νFS = 2.
This suggests that the SDL in disorder is indeed characterized
by two different exponents ν �= νFS similar to charge density
waves [46]. Therefore, we conclude that all our data are best
represented by the following extended set of exponents (see
Table I):

FT ≈ 1.793, δ ≈ 0.07,

ζ ≈ 2.0, z = ζ/(1 − δ) ≈ 2.15,

ν = 1

4 − ζ
≈ 0.5, νFS ≈ 2,

β ≈ 0.29 ≈ νFS(z − ζ ). (50)

We are not able to give sensible margins of errors and
simulations of much larger systems (such that the ratio w/vt

becomes constant) might be needed.

C. Velocity force relation

We also tried to determine the velocity exponent β directly.
In the treatment of DLs, there is a significant discrepancy
in the reported values of β, with either β ≈ 0.33 [9] or
β ≈ 0.25 [13]. These were determined by means of two
slightly different approaches: one can either determine (as
in Ref. [9]) the threshold force FT,sample for each sample and
average 〈[u̇]〉(F − FT,sample) or use 〈v〉(F − FT,sample) (as in
Ref. [13]). We chose the first approach because FT,sample cannot
be clearly extracted from short-time dynamics scaling, and,
thus, the sample specific threshold force has to be determined
anyway.

In Fig. 8 we show data for two single samples of sizes
L = 2048 and L = 8192. We infer from our data

β ≈ 0.28. (51)

This agrees with the value β ≈ 0.29 found in Ref. [20].

D. Large forces

We have successfully confirmed the perturbative results of
Sec. III C (sec Fig. 9) for large driving forces. Additionally,

β ≈ 0.28
〈[ u̇] 〉

F − FT

10−1

10010−2

100

101

F − FT

10−3 10−1
10−1

100

101

102

10−5

〈 [u̇]〉

FIG. 8. (Color online) Velocity force relation for a sample with
of longitudinal size L = 2048 and transverse size M = 8192. The
time average was computed over 1010 time steps 
t = 2 × 10−2.
We interpret the smaller slope at very low force differences as
the beginning of the “single particle” behavior v−1 ∝ const + (F −
FT )−1/2 that has been derived in Ref. [9], whereas at higher force
difference the moving line with v ∼ F becomes apparent. The best
value of β depends on the threshold force used (here and in the inset
we used FT ≈ 1.79), but we found consistent values of β ≈ 0.28
for various sizes and samples. Inset: Velocity force relation for one
larger sample with L = 8192 and M = 16 384. The time average was
computed over 220 time steps 
t = 2−6. There is a larger window with
visible scaling.

we checked that the roughness exponent ζ of the SDL takes its
thermal value ζth = 3/2 for sufficiently large driving forces.

An interesting (and maybe counterintuitive) result is that
increasing the force leads to a decrease in the “effective”
temperature. We show this in Fig. 10 using the time-averaged
width [See Eq. (8)] of the line as function of the force. We
expect the width w to scale as w2 ∼ L2

p(L/Lp)2ζ with an
effective persistence length Lp of the SDL. For purely thermal
fluctuations we have ζ = ζth = 3/2 and Lp ∼ 1/T [62,63].
For the static SDL in disorder, on the other hand, we found

10−3

10−2

10−1

100

10−1 100 101 102

1
−

v
/F

F

FIG. 9. (Color online) The deviation from the asymptotic v ∼ F

for large forces in one sample. The green solid line is the perturbative
result as given by Eq. (38), the brown dashed line is given by 1 −
v/F ∼ F −2. A similar crossover to the single-particle behavior has
been observed for the DL [64]. We used an Euler integration scheme
with 220 small time steps 
t = 2−10 to accurately simulate the system
even for large forces. For steady-state results the time average was
performed only over the last 219 time steps. The system has lateral
size L = 64 and transverse size M = 512.
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〉

FIG. 10. (Color online) Time averaged width for a sample with
L = M = 512. The time average was performed over 230 time steps.
The line is maximally rough at the threshold, which is consistent with
a “shockwave” motion, where small segments of the line move while
the rest is blocked. At higher forces the width reduces with the force,
which could be interpreted as a decrease of the effective temperature
or, analogously, an increase in the effective persistence length. The
solid line is a guide to the eye showing the F −1 trend of the width.

a disorder-induced persistence length which is independent
of temperature in the low-temperature phase of the SDL and
which is minimal at the delocalization threshold [25,26]. For
the dynamic depinning, on the other hand, the simulation
results in Fig. 10 show an increase of the SDL width at
depinning, followed by a decrease w ∼ F−1 at high forces,
where the roughness exponent assumes its thermal value
ζ = ζth = 3/2 again. This is consistent with a behavior w2 ∼
L3/Lp with Lp ∼ F and, thus, an “effective” temperature
Teff ∼ F−1 that decreases with driving force F . This can be
rationalized from the FRG approach by noting that for high
velocities the disorder contributes in form of an additional
thermal noise corresponding to a temperature Teff ∼ v

∫

 [7].

At high forces the line is far from the threshold, and, thus,
∫




should be close to the RB-disorder value of
∫


 = 0. The
observed behavior Teff ∼ F−1 implies

∫

 ∼ F−2 because

v ∼ F .

E. Confinement in a moving parabolic potential

A different approach [10–12,65] to compute the threshold
force, and, additionally, the effective disorder correlation
functions is to pull the line very slowly with a spring. This
means to introduce a parabolic potential acting on each line
segment according to

Vpar(u,t) = m2[u − w(t)]2 (52)

and move the center w(t) of the parabolic potential moves
with a (small) constant velocity ẇ = const > 0. We call m2 the
strength of the potential. The underlying idea is essentially that
the force F (ẇ) exerted by the parabolic potential on the line
as it moves forward becomes the threshold force for m → 0,
ẇ → 0. More precisely, it was found for the DL that

〈w − [u(w)]〉m2 = FT + Cm2−ζ

with some constant C (from now on, we assume that ẇ is
sufficiently small). For general a, the expected corrections
due to finite values of m have to be adjusted to account

for the different elasticity. The length scale Lm at which the
confinement through the parabolic potential becomes relevant
follows from balancing the elastic and the potential energy per
length

u2/L2a ∼ m2u2, La
m ∼ m−1.

Lm is the length of independently adjusting line segments.
Averaging over all w, i.e., averaging over disorder, typical
displacements scale as um ∼ L

ζ
m. This leads to effective forces

scaling as

Fm ∼ m2um ∼ m2Lζ
m (53)

∼ m2−ζ/a, (54)

which includes the aforementioned DL result (a = 1). A
different approach [13] leading to the same result would be
to use the known scaling of the finite-size corrections to the
threshold force in one sample FT (L) − FT ∼ L−1/ν together
with the notion that the relevant length scale is imposed by
the parabolic potential and therefore given by Lm ∼ m−1/a .
The confinement splits the line into independent segments of
length Lm, and, therefore, one gets Fm = FT (LM ) − Fmm1/νa .
Using Eq. (18) one finds 1/(νa) = 2 − ζ/a, and, thus, these
two approaches are equivalent. In this derivation it is also clear
that there will be deviations for very small a when Lm exceeds
L.

As the line is constantly moved forward we chose to change
the implementation of the potential. We still have a fixed
amount M of potential values (knots for the cubic spline),
but we update the potential “on-the-fly” as the line is moved
forward. Every time a segment of the line reaches a new quarter
of M , we update the quarter that has the greatest distance to
the current location and compute the splines [in principle, this
changes the spline at the current location of the line, but the
change is negligibly small if M is large enough (we used
M = 1024)]. Our motivation for this scheme was to avoid
finite-size-effects in the transverse direction and to be able to
compute the disorder average as a time average. In Fig. 11 we
show that our data are consistent with ζ ≈ 2.0.

ζ = 2

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

〈w
−

[u
( w

)]
〉m

2

m

FIG. 11. (Color online) Time average of the net force that the
parabolic potential exerts on the center of motion of the line (L =
256, M = 1024). The solid line is a fit for m ∈ [0.1,0.5] with ζ = 2
yielding FT = 1.733 ± 0.007. The velocity of the parabolic potential
was ẇ = 10−6. The shape of the numerical results and their deviations
from the analytical expectation resemble the findings for the DL in
Ref. [11]. The value FT = 1.733 deviates from the value found above
because of the differing system size.
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FIG. 12. (Color online) Numerical determination of the disorder
correlator 
(u) according to (55) with m2 = 10−2. The data are taken
from the same simulation as for Fig. 11. The dashed (green) line is the
one-loop solution and the dotted (black) line is the two-loop solution;
see Sec. III B and Ref. [8]. The length scale u0 is determined via∫

du
(u/u0) = 1. The inset shows the relative difference between
the two-loop solution 
2L and the numerically determined values 
,
i.e., δrel = (
 − 
2L)/
2L for small u/u0.

Furthermore, this setup allows for a direct measurement of
the effective force correlation function and hence a validation
of the renormalization group solution. This is achieved via the
second cumulant of u(t) − w(t) as

〈[u(t) − w(t)][u(t ′) − w′(t ′)]〉cm4 ∝ 
(w − w′). (55)

This contribution is closely related to the shape of the force
correlation function [8]; see Eq. (33). The existence of a
nonvanishing 
′(0+), often referred to as “cusp,” is a sign
of the nonanalyticity of the correlation function. We show our
results in Fig. 12, which demonstrate promising agreement
with the functional renormalization group fixed point function.

F. Finite temperatures: Thermal rounding

The finite mean velocity at arbitrarily small nonzero
temperatures is only visible for very long simulation times,
Thus, the regime in which creep or TAFF behavior should
occur is not accessible for us.

The thermal rounding exponent ψ , as defined in Eq. (45),
can be interpreted in a slightly different way that we feel is
more apt for the interpretation of numerical data. Moving away
from the threshold at F = FT and T = 0 the velocity scales
as (F − FT )β or T ψ , respectively. Thus, a finite temperature
at FT can effectively be seen as a contribution to the pulling
force with

F − FT ∼ T η (56)

and η = ψ/β. Adapting our previous statements the pertur-
bative conjecture would be η = 1/(1 + 2β). In Fig. 13 we
show that using this rescaling we can collapse data for the
velocity as a function of F − FT at T = 0 and for the velocity
at the threshold F = FT as a function of temperature. The data
collapse is consistent with η = 1/(1 + 2β) and β ≈ 0.28.

We compare our numerical results for the thermal rounding
of the depinning transition for the DL and the SDL in Fig. 14.
Surprisingly, we find no evidence for a qualitative change at a
finite temperature that could be associated with the localization
transition in the static problem. This could mean either that the

10−1

100

101

10−4 10−3 10−2 10−1 100 101

〈[u̇
]〉

const · T 1/(1+2β)

FIG. 13. (Color online) Time average of the velocity at the
threshold force for finite temperatures. We used β = 0.28 or η = 0.64
in the rescaling of the temperature (black points). The data collapse
with data for the velocity as a function of F − FT at T = 0 (blue
line) after rescaling using Eq. (56). The data for the velocity as a
function of F − FT at T = 0, and, thus, all system parameters but
the temperature are the same as for Fig. 8.

change is too subtle to be apparent within our numerics or that,
in terms of the FRG, a finite velocity v > 0 implies that the
relevant fixed point is one featuring v > 0 and T = 0, which
would make the transition at finite temperature irrelevant for a
moving line.

SDL

DL

0.01

0.1

1

10

0.01

0.1

1

10

0.01 0.1 1 10F

v
v

FIG. 14. (Color online) Velocity of the line as a function of the
driving force at four different temperatures (solid line: T = 0). For a
better comparison we show data for a SDL and a DL in the same
disorder. Note that as the same disorder was used the velocities
are very similar, but not identical. All system parameters but the
temperature are the same as for Fig. 8.
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V. DIRECT COMPUTATION OF THRESHOLD FORCE:
MIDDLETON’S THEOREMS

In the study of the depinning of directed lines two important
properties have been found [6]: (a) the “no-passing” theorem,
which states that two lines in the same disorder realization that
do not cross each other at a given time will never cross each
other, and (b) if each segment of the line has at some point
in time a non-negative velocity, the velocity will remain non-
negative for all times; this has been referred to as “no-return”
property [66]. The no-passing theorem is believed to hold for
every convex next-neighbor elastic energy. The combination
of these properties allows for a fast and precise algorithm to
determine the threshold force directly [60].

With regard to the no-passing theorem we consider the
following situation: two lines z1, z2 in the same medium that
touch each other at exactly one point; that is, there is one x with
z1(x) = z2(x) and z1(x ′) > z2(x ′) for x �= x ′. For the DL, it
follows that v1(x) > v2(x). As both lines touch each other in x

a possibly differing velocity of the two lines is due to the elastic
forces. In the discrete version we then have v1(x) > v2(x),
because [z1(x − 1) − z2(x − 1)] + [z1(x + 1) − z2(x + 1)] >

0. This does not work for the SDL, because the difference in
velocity

v1(x) − v2(x) = − [z1(x − 2) − z2(x − 2)]

− [z1(x + 2) − z2(x + 2)]

+ 4[z1(x − 1) − z2(x − 1)]

+ 4[z1(x + 1) − z2(x + 1)] (57)

can take any value. We visualize this in Fig. 15.
Therefore, the SDL does not necessarily explore “new”

regions of the disorder potential. A line that moves back and
forth “knows” essentially the whole potential at any point.
This could be an explanation for the two distinct correlation
length exponents ν and νFS that we found for the SDL; see
Eq. (50). The fact that Middleton’s theorems guarantee that
u(x) is a monotonic function of time is also used in the
evaluation of ambiguous vertices within the FRG treatment
in Ref. [8]. However, we feel that coming from a moving line
with v > 0 the quasistatic depinning limit is still well defined
for the SDL because the long time limit of the roughness is
(for finite L) finite and, therefore, all segments will eventually

FIG. 15. (Color online) Cartoon exemplifying the difference in
the evolution of a DL and a SDL starting from the lower horizontal
conformation. Let the potential be such that the line points at A and B

are forced to move to A′ and B ′, whereas the ends and the line point
at C cannot move. The DL (green dashed line) does not pass the
blocked upper line and does not cross the lower line. The SDL (blue
dash-dotted line) seeks to reduce the curvature and, consequently,
does cross both lines.

move on average with the same velocity. The agreement of
the FRG with our numerical results supports that there is no
fundamental problem with the applicability of the FRG for
the SDL. Still, there is definitely room and need for a more
rigorous analysis.

VI. CONCLUSION

We studied the depinning of SDLs from disorder (RF
or RB) in 1 + 1 dimensions due to a driving force. Using
scaling arguments, analytical FRG calculations, and extensive
numerical simulations, we characterized the critical behavior
at and around the depinning transition. Our study revealed
some characteristic differences in depinning behavior between
SDLs and DLs governed by tension.

The resulting equation of motion for the SDL in disorder
is equivalent to the Herring-Mullins equation for surface
growth, which is governed by surface diffusion rather than
surface tension, in quenched disorder. Our results also apply
to semiflexible polymers with contour lengths smaller than
their persistence length, which are pulled over a disordered
surfaces or driven through a random medium.

We show that Middleton’s theorems do not apply to
SDLs. Nevertheless we find a well-defined threshold force
FT for depinning. Likewise, critical exponents characterizing
roughness and the dynamics of depinning can be defined
and numerically determined for the SDL as for the DL.
The SDL represents an own dynamical universality class
with a different set of exponents. Our extensive numerical
data is best described by the set (50) of critical expo-
nents, which is also consistent with scaling relations; see
Sec. III A. We also investigated the behavior of the SDL persis-
tence length, which exhibits a characteristic nonmonotonous
force dependence through the depinning transition (see
Fig. 10).

We transferred functional renormalization group results to
the elasticity of stiff interfaces, which allows us to derive ana-
lytical results or bounds for critical exponents (see Sec. III B).
We find satisfying agreement of these analytical predictions
with our numerical work. Our results indirectly imply that the
depinning threshold is associated with two distinct correlation
length exponents ν and νFS. To our knowledge this would be
the first occurrence of such behavior in a nonperiodic system.
This result could be linked to the nonvalidity of Middleton’s
no-passing theorem.

Our findings for the critical exponents at the threshold force
disagree in parts with previous numerical work, which suggests
that further work, especially on much larger systems, might be
helpful to settle these exponents.

For finite temperatures, the depinning of a SDL is an
interesting problem because, at equilibrium (no pulling force),
the problem features a disorder-driven localization transition
at a finite temperature. Such a transition is absent for the
DL, which remains in a localized disorder-dominated phase
for all temperatures. Surprisingly, the numerical results for
a comparison of the thermal rounding of the force-driven
depinning transition do not show any qualitative difference
between DLs and SDLs; see Fig. 14. In a renormalization
group sense, this might imply that the force-driven depinning
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and the temperature-driven delocalization are not described by
the same fixed point.
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APPENDIX: BOUNDS FOR THE DYNAMICAL
EXPONENT z

In Ref. [8] the dynamical exponent z has been found to be
to two-loop order

z = 4 − 2/9ε + ε2

(
ζ2

3
− 2X(2a)

27
+ Y (2a)

54

)
(A1)

with ζ2, X(2a) the same as in the main text and

Y (2a) = X(2a) + ε

[
2Iη

(εI1)2
− 1

ε

]
, (A2)

where we use Iη as shorthand notation for the aforementioned
correction to friction for the SDL:

Iη = I (4)
η =

∫
q1,q2

1(
q2

1 + m2
)2 (

q2
2 + m2

)4 (A3)

× 1{ (
q2

2 + m2
)2 + [(q1 − q2)2 + m2]2

} , (A4)

and I1 is the one-loop integral given by

I1 = m−ε �(ε/2)

�(4)

(∫
q

e−q2

)
. (A5)

Using Iη � 0 we find the lower bound

z � 1.8607. (A6)

For an upper bound we note that in any dimension (any value
of ε) the following inequality holds:

Iη � Jη =
∫

q1,q2

1(
q2

1 + m2
)2(

q2
2 + m2

)4(
q2

3 + m2
)2 ,

and Jη can be evaluated to leading order in ε via Laplace
transforms:

Jη = 1

�(4)

∫
s1,s2,s3 > 0

q1,q2

s1s
3
2s3e

−s1(q2
1 +m2)−s2(q2

2 +m2)−s3(q2
3 +m2) =

( ∫
q
e−q2)2

�(4)

∫
s1,s2,s3>0

s1s
3
2s3e

−m2(s1+s2+s3)

(s1s2 + s2s3 + s2s3)d/2
.

Substituting s2 → s1s2, s3 → s1s3 gives

Jη =
( ∫

q
e−q2)2

�(4)

∫
s1,s2,s3>0

s7−d
1 s3

2s3e
−m2s1(1+s2+s3)

(s2 + s3 + s2s3)d/2
=

( ∫
q
e−q2)2

�(4)
�(ε)m−2ε

∫
s2,s3>0

s3
2s3

(s2 + s3 + s2s3)d/2

1

(1 + s2 + s3)ε

=
( ∫

q
e−q2)2

�(4)
�(ε)m−2εJ,

J =
∫

s2,s3>0

s3
2s3

(s2 + s3 + s2s3)4

(s2 + s3 + s2s3)ε/2

(1 + s2 + s3)ε
=

∫
s2,s3>0

s2s3

(1 + s3 + s2s3)4

s
ε/2
2 (1 + s3 + s2s3)ε/2

(1 + s2 + s2s3)ε
= J1 + J2 + J3.

In the second to last step we substituted s3 → s2s3. We have divided the integration in three terms to isolate the (important)
divergent part:

J1 =
∫ ∞

1
ds2

∫ ∞

0
ds3

s2s3

(1 + s3 + s2s3)4

s
ε/2
2 (1 + s3 + s2s3)ε/2

(1 + s2 + s2s3)ε
= − 1

12
+ ln 2

6
+ O(ε) (A7)

J2 =
∫ ∞

0
ds3

∫ 1

0
ds2

[
s2s3

(1 + s3 + s2s3)4

s
ε/2
2 (1 + s3 + s2s3)ε/2

(1 + s2 + s2s3)ε
− s

1+ε/2
2 s3

(1 + s2s3)4+ε/2

]
= − 1

12
− ln 4

6
+ O(ε), (A8)

J3 =
∫ ∞

0
ds3

∫ 1

0
ds2

s
1+ε/2
2 s3

(1 + s2s3)4+ε/2
= 1

3ε
− 5

18
. (A9)

Thus collecting all terms we find

Jη =
( ∫

q
e−q2)2

�(4)
�(ε)m−2ε(J1 + J2 + J3) = 6

4
(J1 + J2 + J3)(εI1)2 (A10)

and

Y (4) � X(4) + ε

(
2Jη

(εI1)2
− 1

ε

)

� −2

3
+ O(ε), (A11)

which ultimately yields

z � 2.3144, (A12)

i.e., Eq. (31) in the main text.
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